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In the metropolis, tra±c congestion has become a very serious problem, especially in rush hours.

This congestion causes people to have more chance to contact each other and thus will accel-
erate epidemic spreading. To explain this observation, we present a reaction–di®usion (RD)

model with a periodic varying di®usion rate to represent the daily traveling behaviors of human

beings and its in°uence to epidemic spreading. By extensive numerical simulations, we ¯nd that

the epidemic spreading can be signi¯cantly in°uenced by tra±c congestion where the amplitude,
period and duration of di®usion rate are the three key parameters. Furthermore, a brief theory is

presented to explain the e®ects of the three key parameters. These ¯ndings suggest that except
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the normal ways of controlling contagion in working places and long-distance traveling, con-

trolling the contagion in daily tra±c congestion may be another e®ective way to reduce epi-

demic spreading.

Keywords: Epidemic spreading; complex network; tra±c congestion.

PACS Nos.: 89.75.Hc, 87.23.Ge, 87.19.X-, 05.70.Fh.

1. Introduction

The modern society is becoming more and more fast-paced, which guarantees the fast

growth of the economy. To get a higher payo®, people frequently change their jobs

and thus resulting in a separation between their homes and working places. In cities

especially metropolis, people generally go to o±ce in the morning and back to home

in the evening, which results in a synchronized pace, called rush hours. A serious

consequence of rush hours is the tra±c congestion in which haste brings no success.

This phenomenon has been observed for a long time and recently been treated as a

Bose–Einstein condensation (BEC) of agents in complex networks.1–4 It is found that

network topology is an important factor to in°uence the condensation. On the other

hand, this problem has been also investigated in communication in Internet where

the main concentration is how to reduce the tra±c congestion by designing e±cient

algorithms.5–14 In all these studies, no matter it is BEC or communication in In-

ternet, the di®usion rates at di®erent nodes can be di®erent but they are considered

as constants, once ¯xed, i.e. not varying with time.

However, in the situation of realistic tra±c, the di®usion rates have to depend on

time, which is the characteristic feature of human activities.15 Based on the obser-

vations that there are both daily and weekly tra±c cycles, it is necessary to consider

the case of periodic varying di®usion rate. Thus, in this contribution, we present a

reaction–di®usion (RD) model with a periodic varying di®usion rate to describe the

daily traveling behaviors of human beings.

A hot topic closely related to tra±c congestion is epidemic spreading. In the

congestion process, people will stay in some common places such as subways, buses,

cars, train stations or airports for longer time and thus will have more chance to

contact each other. As viruses are spreading through mediums such as body-contact

or air and the contagion is proportional to the contact time,16 the congestion process

de¯nitely results in epidemic spreading. To understand its underlying mechanism,

much attention has been recently paid to the in°uence of tra±c on epidemic

spreading. For example, in email exchange networks,17 it was found that computer

viruses by non-Poisson nature of the contact dynamics decay much slower than

predicted by the standard Poisson-process-based models. In transportation net-

works, the in°uence of network topology was considered in Refs. 18–21 and the

reaction at links was considered in Ref. 22. In tra±c-driven epidemic spreading, it

was found that the value of the epidemic threshold depends directly on °ow condi-

tions,23–25 etc. These works signi¯cantly increase our understanding on epidemic
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spreading by human dynamics. However, there is no work so far on how the periodic

rush hours of daily travel in°uences epidemic spreading, which is in fact one of the

main ways to spread viruses. Thus, we address this problem in this paper. By ex-

tensive numerical simulations, we ¯nd that the epidemic spreading can be signi¯-

cantly in°uenced by tra±c congestion where the amplitude, period and duration of

di®usion rate are the three key parameters. Then, we give a brief theory to explain

the e®ects of the three parameters.

The rest of this paper is organized as follows. In Sec. 2, we present a model to

discuss the in°uence of tra±c congestion on epidemic spreading. Then in Sec. 3, we

make numerical simulations to show the e®ects of the three key parameters. After

that, we give a brief theoretical analysis to the obtained numerical results in Sec. 4.

Finally, we give discussions and conclusions in Sec. 5.

2. Model

There are evidences to show that tra±c networks are usually scale-free (SF), in-

cluding subway, bus and airport networks.26–29 Thus, we here consider an SF net-

work of the uncorrelated con¯guration model (UCM) with a power-law degree

distribution PðkÞ ¼ c1k
�3;30 where the degree k ranges from kmin ¼ 3 to kmax ¼

ffiffiffiffiffi
N

p
,

c1 ¼ 18N=ðN � 9Þ and N is the size of network. Initially, we distribute totally Np

agents on the N nodes of network by letting the agents on a node with degree k be

nkð0Þ ¼ c2k with c2 ¼ Np=Nhki and hki being the average degree. Then, we let each

agent have a probability to travel and thus the system will begin its evolution and

nkð0Þ will become nkðtÞ at time t. To simulate the traveling of people in the UCM

network, we divide the agents at a node into two parts, i.e. travelers nT
k ðtÞ and

nontravelers nH
k ðtÞ with nkðtÞ ¼ nT

k ðtÞ þ nH
k ðtÞ and nT

k ðtÞ coming from the k

neighboring nodes. The travelers can be generated from the nontravelers at each time

step by a probability p, thus the new travelers generated at a node at time t will be

pnH
k ðtÞ. Once an agent is chosen to be a new traveler, a destination will be given

preferentially from the remaining N � 1 nodes of the network by a probability

proportional to their degrees. This objective traveling will make each traveler go

along the shortest path to arrive its destination, in contrast to the random di®usion

where a traveler may randomly choose one of its neighbors as the destination. We use

the algorithm given in Refs. 10 and 14 to implement the shortest path. Each traveler

will go one step forward along the shortest path at each time step, if the tra±c is in

the free phase; otherwise, it will queue in the line according to the ¯rst-in-¯rst-out

policy. Let dij be the shortest distance between the nodes i and j, a traveler will take

at least dij steps to move from its starting node i to its destination node j. Once the

traveler arrives its destination, it will become a nontraveler. Thus, the travelers at a

node include both the passing by travelers and the newly generated ones, while the

nontravelers include both the remained nontravelers and the new ones arrived their

destinations. A simple sketch of the RD model with a periodic varying di®usion rate

is represented in Fig. 1.
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Because of the limitations of road's width and subway frequency etc, each node

will have a ¯nite capacity to transfer travelers. We let the capacity be Ek ¼ �nkð0Þ,
i.e. a node with degree k can deliver at most Ek agents at each time step, which is

similar to the communication capacity in Internet.10,14 A larger � means a larger

delivering ability. LetQout
i ðtÞ be the delivered agents of node i at time t andQ in

i ðtÞ be
the travelers waiting to leave. We have Q in

i ðtÞ ¼ nT
k ðtÞ þ pnH

k ðtÞ. At the same time,

we have Qout
i ðtÞ ¼ Q in

i ðtÞ when Q in
i ðtÞ < Ek and Qout

i ðtÞ ¼ Ek when Q in
i ðtÞ > Ek,

indicating that travelers will be accumulated once Q in
i ðtÞ > Ek. A tra±c congestion

will occur provided that the accumulation becomes more and more serious. We

introduce an order parameter

QðtÞ ¼ 1

N

XN
i¼1

ðQ in
i ðtÞ �Qout

i ðtÞÞ ð1Þ

to measure the degree of congestion. The system will be in the free phase when

QðtÞ ¼ 0 and congestion phase whenQðtÞ > 0. The largerQðtÞ implies a more serious

congestion.

The tra±c congestion can be also measured by the traveling time. Let tsðjÞ be the
time for the traveler j to arrive its destination and tlðjÞ be the length of its shortest

path. Then, we introduce an average time di®erence

h�ti ¼ 1

Narrive

XNarrive

j¼1

tsðjÞ � tlðjÞ
tlðjÞ

ð2Þ

Fig. 1. (Color online) Schematic illustration of the RD model with a periodic varying di®usion rate. The

circles represent the nodes and the lines with arrow denote the links between two neighboring nodes. The

agents are indicated by di®erent colored dots in the picture. In node i, an agent can travel with rate
varying di®usion rate p from starting node i to destination j following the shortest path in the network. If

the tra±c is in the free phase, this agent will take at least three steps to its destination node j. However, if a

tra±c congestion occur, the time to the destination node j will be longer than three steps.
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to measure the degree of congestion, where Narrive represents the number of travelers

arriving their destinations. h�ti will be zero in the free phase and greater than zero in

the congestion phase.

As pointed out in the introduction, the daily travels of people are periodic with a

larger di®usion rate in the rush hours and a smaller di®usion rate in the nonrush

hours. To re°ect this spatio-temporal feature of human behaviors, we let the trav-

eling probability p be periodic and take the following expression:

pðtÞ ¼ p0 þ A; 0 � t < T=n

p0 � A=ðn� 1Þ; T=n � t � T

�
ð3Þ

where A;T represent the amplitude and period, respectively, and T=n denotes the

duration of rush hours. To make pðtÞ close to realistic situation, we let pðtÞ satisfy
two conditions: (i) pðtÞ > 0, which requires A < ðn� 1Þp0; and (ii) the traveling

people in a period of T should be kept a conservation of p0T , i.e.
R T
0
pðtÞdt ¼ p0T is

independent of the parameters A and n.

We now consider epidemic spreading in the above networked tra±c system. We

choose the standard susceptible-infected-susceptible (SIS) model,31–39 where a sus-

ceptible agent may be infected with an infectious rate � if it contacts an infected

agent. At the same time, an infected agent may become susceptible automatically

with a recovery rate �. Note that there are multiple agents in every node. The

standard SIS model has to be replaced by the RD model40–42,22,43 where the conta-

gion process is divided into two sub-processes: reaction and di®usion. In the reaction

process, all the agents at the same node are assumed to be well-mixed and an infected

agent can contact all the other agents at the same node. For convenience, we let

nkðtÞ ¼ nk;SðtÞ þ nk;IðtÞ where nk;SðtÞ and nk;IðtÞ represent the susceptible and in-

fectious agents in a node with degree k, respectively. Thus, the probability for a

susceptible agent to become an infected one is 1� ð1� �Þni;I where ni;I represents the

number of infected agents at node i. While in the di®usion process, the nontravelers

will become travelers by a di®usion rate, i.e. the traveling probability p, and the ¯rst

Ei travelers in the queue of node i will be moved to their next stations along their

shortest paths.

To measure epidemic spreading, we introduce a quantity

�ðtÞ ¼ 1

Np

XN
i¼1

ni;I ð4Þ

to represent the density of infected agents in steady state. The in°uence of tra±c

congestion to epidemic spreading can be re°ected by �ðtÞ.

3. Numerical Simulations

In numerical simulations, we ¯rst construct an UCM network with size N and av-

erage degree hki � 5 by the algorithm in Ref. 30. Then, we input Np ¼ 100N agents

to the N nodes of network by letting the agents at node i be nið0Þ ¼ c2ki. Before
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considering the case of periodic di®usion rate (3), we ¯rst try the case of constant

di®usion rate with p ¼ p0 ¼ 0:02. Figures 2(a) and 2(b) show the dependence of the

order parameter h�ti and hQðtÞi on the capacity parameter �, respectively, where

hQðtÞi is the time average of QðtÞ in the stabilized state and the two curves with

\squares" and \circles" represent the cases of N ¼ 1000 and 3000, respectively. It is

easy to see that there is a critical �c ¼ 0:32 for the case ofN ¼ 1000 and �c ¼ 0:46 for

the case of N ¼ 3000. Both h�ti and hQðtÞi are zero for � > �c and greater than zero

for � < �c, indicating that the system is congested for � < �c. To investigate the

in°uence of tra±c congestion to epidemic spreading, we ¯x � ¼ 0:001 and � ¼ 0:1 in

this paper and let initially 0:1% people be infected. Figure 2(c) shows the dependence

of the density � on �. From Fig. 2(c) we see that � is a constant for � > �c and

increases with the decrease of � for � < �c, indicating that the tra±c congestion

enhances epidemic spreading. Figure 2(d) shows the dependence of the critical point

�c on the network size. In the following discussions, we ¯x N ¼ 1000 andNp ¼ 105, if

without speci¯c illustration.

Note that tra±c congestion more often happens in a hub node (i.e. a big city)

because of its heavy tra±c °ow and limited capacity (i.e. road width). This phe-

nomenon implies that the capacity � in a metropolis will be close to but smaller than

�c. Thus, we ¯x � ¼ 0:32 in the following discussions. We consider the case of Eq. (3)

with periodic varying pðtÞ. Figure 3(a) shows the forms of pðtÞ for di®erent ampli-

tudes A with ¯xed T ¼ 240 and n ¼ 5, where the line of A ¼ 0 represents the case of

constant di®usion rate with p ¼ p0 ¼ 0:02 in Fig. 2. Correspondingly, Figs. 3(b) and

(a) (c)

(d)(b)

Fig. 2. (Color online) Case of constant di®usion rate with p ¼ p0 ¼ 0:02 where �c represents the critical

point and the averages are obtained by 100 realizations. In (a)–(c), the curves with \squares" and \circles"
represent the cases of N ¼ 1000 and 3000, respectively, with (a) h�ti versus �, (b) hQðtÞi versus �, and (c)

� versus �. The dependence of �c on the network size is shown in (d).
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3(c) show the evolutions of QðtÞ and �ðtÞ, respectively. From Fig. 3(b), we see that

compared to the case of A ¼ 0, the cases of A > 0 cause QðtÞ > 0 and QðtÞ is pro-
portional to A, indicating that a congestion phase has been induced by A > 0 and the

degree of congestion becomes more serious with the increase of A. From Fig. 3(c), we

see that the infected fraction �ðtÞ will initially increase with t and then quickly reach

a steady state. We note that there are two features in Fig. 3(c): (i) The integration of

each curve with A > 0 is greater than that of A ¼ 0, con¯rming that the tra±c

congestion has enhanced epidemic spreading. (ii) The dotted line between Figs. 3(a)

and 3(c) shows that �ðtÞ will continue to be large for a ¯nite time when pðtÞ drops to
its bottom. As the tra±c congestion cannot keep smooth immediately when pðtÞ
drops to bottom, the agents still have more chance to contact each other and thus

will accelerate epidemic spreading.

To see the in°uence of the period T , Fig. 4 shows the results of T ¼ 60 where the

other parameters are kept the same as in Fig. 3. Comparing the corresponding panels

between Figs. 3 and 4, it is clear that the values of QðtÞ and �ðtÞ in Fig. 4 are much

smaller than that in Fig. 3, indicating that a larger period T favors the epidemic

spreading. Similarly, Fig. 5 shows the in°uence of the duration parameter of rush

hours n where we ¯x T ¼ 240 and A ¼ 0:02 and the three curves represent the cases

of n ¼ 2; 5 and 10, respectively. It is easy to see that the values of QðtÞ and �ðtÞ are
seriously in°uenced by n, indicating that the duration parameter n is also a key

parameter to in°uence the epidemic spreading. From Fig. 5(c), we see that the

°uctuation of �ðtÞ decreases with the increase of n. This result can be easily

(a)

(b)

(c)

Fig. 3. (Color online) Case of Eq. (3) with periodic varying pðtÞ and ¯xed T ¼ 240 and n ¼ 5, where the

curves represent the cases of A ¼ 0; 0:04 and 0:08, respectively. (a) pðtÞ versus t, (b) QðtÞ versus t and

(c) �ðtÞ versus t.
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understood because smaller n means longer rush hours and thus results in heavy

epidemic spreading.

In sum, we have ¯gured out three key parameters to in°uence the epidemic

spreading, i.e. A;T and n. Note that the panicky behaviors are usually caused by the

(a)

(b)

(c)

Fig. 4. (Color online) Case of Eq. (3) with periodic varying pðtÞ and ¯xed T ¼ 60 and n ¼ 5, where the

curves represent the cases of A ¼ 0; 0:04 and 0:08, respectively. (a) pðtÞ versus t, (b) QðtÞ versus t and
(c) �ðtÞ versus t.

(a)

(b)

(c)

Fig. 5. (Color online) Case of Eq. (3) with periodic varying pðtÞ and ¯xed T ¼ 240 and A ¼ 0:02, where

the curves represent the cases of n ¼ 2; 5 and 10, respectively. (a) pðtÞ versus t, (b) QðtÞ versus t, and (c)

�ðtÞ versus t.
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possible largest density �max, we study how the three key parameters in°uence �max.

Figure 6(a) shows the dependence of �max on A, where the four curves represent the

cases of T ¼ 60; 120; 240 and 480, respectively. We see that �max increases monoto-

nously with both A and T by a nonlinear way. Figure 6(b) shows the dependence of

�max on 1=n, where the two curves represent the cases of A ¼ 0:02 and 0:04, re-

spectively. We see that �max also increases with 1=n in a nonlinear way.

4. A Brief Theoretical Analysis

To explain the obtained numerical simulations, we here give a brief theoretical

analysis. First, we derive the critical point �c. From Eq. (1), we know that for a given

p, the congestion of system is determined by the hub node. The system will be in the

free phase when Q in
hubðtÞ < Ehub and in the congestion phase when Q in

hubðtÞ > Ehub,

thus we have Q in
hubðtÞ ¼ Ehub at the critical point �c. For a concrete node with degree

k, we have the following relationship at the critical point:

nT
k ðtÞ þ pnH

k ðtÞ � �cnkð0Þ; ð5Þ
where the relation \¼" is only for the hub node and \<" for other nodes. nT

k ðtÞ and
nH

k ðtÞ satisfy X
k

NP ðkÞðnT
k ðtÞ þ nH

k ðtÞÞ ¼ Np: ð6Þ

(a)

(b)

Fig. 6. (Color online) Dependence of �max on the three key parameters. (a) �max versus A with n ¼ 5,
where the four curves represent the cases of T ¼ 60; 120; 240 and 480, respectively. (b) �max versus 1=n

with T ¼ 240, where the two curves represent the cases of A ¼ 0:02 and 0:04, respectively.
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Let d � hdiji be the average shortest distance. In the steady state, one d-th of the

total travelers will arrive their destinations, i.e.
P

kNPðkÞnT
k ðtÞ=d. Considering that

the destinations are chosen preferentially by a probability proportional to degree k,

we have k
Nhki

P
kNPðkÞnT

k ðtÞ=d agents to arrive at a destination node with degree k

at each time step. By the feature of steady state, we have

pnH
k ðtÞ ¼

k

Nhki
X
k

NP ðkÞnT
k ðtÞ=d: ð7Þ

From Eqs. (6) and (7), we obtain hnT
k ðtÞi �

P
kP ðkÞnT

k ðtÞ ¼ pdNp

ð1þpdÞN and thus have

nH
k ðtÞ ¼

k

hki
Np

ð1þ pdÞN : ð8Þ

Note that the betweenness BðkÞ represents how many shortest paths go through a

node with degree k,44 thus statistically, we have

nT
k ðtÞ ¼

BðkÞ
hBðkÞi hn

T
k ðtÞi ¼

BðkÞ
hBðkÞi

pdNp

ð1þ pdÞN : ð9Þ

As the congestion is determined by the hub node with the maximum betweenness, we

take k ¼ kmax and substitute Eqs. (8) and (9) into Eq. (5). We obtain

�c ¼
p

1þ pd
1þ dhkiBðkmaxÞ

kmaxhBðkÞi
� �

: ð10Þ

Substituting the values of parameters p ¼ 0:02, d ¼ 4:585, hki ¼ 5,

BðkmaxÞ ¼ 0:056359, kmax ¼ 23 and hBðkÞi ¼ 0:003593273 into Eq. (10), we obtain

�c � 0:31, which is very close to the numerical �c ¼ 0:32 in Fig. 2. For an uncorre-

lated SF network with large size N, we have BðkÞ � k�, d � lnN and � � 1:66 for

� ¼ 3.45,46 When network size N increases, kmax ¼
ffiffiffiffiffi
N

p
will become larger and

BðkmaxÞ=kmax will increase. As hki and hBðkÞi are insensitive with large size N , the

threshold value �c will increase with network size N (see Fig. 2(d)).

We now turn to understand why the tra±c congestion can enhance epidemic

spreading. To investigate how the three key parameters A;T and n in°uence epi-

demic spreading, we focus on the �max in Fig. 6. From Figs. 2 to 4, we note that the

moment tm to obtain �max is approximately the moment to get the maximum con-

gestion QðtÞ, thus it is interesting to see the distribution of agents at tm. Figure 7(a)

shows the results where the curve of \squares" represents the case of A ¼ 0, the curve

of \circles" represents the case of A ¼ 0:04, T ¼ 240 and n ¼ 5, the curve of \up

triangles" represents the case of A ¼ 0:04, T ¼ 60 and n ¼ 5, and the curve of \down

triangles" represents the case of A ¼ 0:04, T ¼ 240 and n ¼ 10. We see that for the

case of A ¼ 0, nk is proportional to k, con¯rming the initial distribution of nkð0Þ.
However, for all the other three cases of A > 0, nk is nonlinearly-dependent on k and

especially, they are greater than the case of A ¼ 0 when k > 9. To see the part of

k < 9 clearly, we let �nk be the di®erence between the case of A ¼ 0:04, T ¼ 240 and

n ¼ 5 and the case of A ¼ 0, see Fig. 7(b). From the inset of Fig. 7(b), we see that �nk
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is negative in the range of k < 9, indicating that the congested agents for k > 9 come

from the part of k < 9.

It is for sure that the nonlinear distribution of nk in Fig. 7 will induce a nonlinear

distribution of infected agents. Figure 8 shows the results where nk;I and nk;S rep-

resent the infected and susceptible agents at a node with degree k. From Fig. 8, it is

clear that nk;I of all the three cases with A > 0 are larger than that of the case with

A ¼ 0 for k > 9, con¯rming that the congestion at those nodes with k > 9 is the

direct reason to induce �max in Fig. 6.

We have to point out that it is not linear for more accumulated agents to make

more infected agents but nonlinear. To make this point clearer, we simplify the

problem to a star con¯guration, a special structure that grasps the main property of

SF networks, namely, the role of hubs. The star graph is composed by a central node

(the hub) and k peripheral nodes. Each of the peripheral nodes connects solely to the

hub. Thus, the connectivity of the peripheral nodes is ki ¼ 1ði ¼ 1; . . . ; kÞ while that
of the hub is kh ¼ k. In the congestion phase, the agents at the hub will increase while

the agents at the peripheral nodes will decrease, which gives

niðtþ 1Þ ¼ niðtÞ � �A; i ¼ 1; 2; . . . ; k

nhðtþ 1Þ ¼ nhðtÞ þ �khA;
ð11Þ

where � is a coe±cient. The lost infected agents at a peripheral node from the part

��A will be proportional to �A½1� ð1� �Þni;I � with ni;I being the infected agents at

(a)

(b)

Fig. 7. (Color online) Distribution of agents for the case of maximum congestion (obtained by averaging
on 500 realizations), corresponding to the time of �max in Fig. 6. (a) The curve of \squares" represents the

case of A ¼ 0, the curve of \circles" represents the case of A ¼ 0:04;T ¼ 240 and n ¼ 5, the curve of \up

triangles" represents the case of A ¼ 0:04;T ¼ 60 and n ¼ 5, and the curve of \down triangles" represents

the case of A ¼ 0:04;T ¼ 240 and n ¼ 10. (b) The di®erence between the case of A ¼ 0:04;T ¼ 240 and
n ¼ 5 and the case of A ¼ 0 where the inset is an ampli¯cation of the part of k < 12.

In°uence of periodic tra±c congestion on epidemic spreading

1650048-11



a peripheral node, and thus the total lost infected agents at all the peripheral nodes

are proportional to k�A½1� ð1� �Þni;I �. Similarly, the gained infected agents at the

hub from the part �khA will be proportional to �khA½1� ð1� �Þnh;I � with nh;I being

the infected agents at the hub. As nh;I is much lager than ni;I , the gained infected

agents will be greater than the lost infected agents, resulting in a net increase of

infected agents proportional to A. The larger T and smaller n will make the con-

gested time longer and thus produce more net increase of infected agents. This is the

reason why the �max in Fig. 6 increases with the three key parameters A;T and 1=n.

5. Discussions and Conclusions

Equation (3) is the ¯rst model to describe the e®ect of periodic rush hours in tra±c

and can be used to the cases of di®erent tra±c such as bus, car, subway, train station,

airport, etc. Except the daily and weekly periodicity, these places usually have se-

rious tra±c congestion in holidays, especially in the spring festivals of China and

Korea. This congestion enhanced epidemic spreading has been evidenced by the

common observation that there are more infected people during the holidays than

weekdays.

This model of Eq. (3) is only the starting part to study the in°uence of rush hours

on epidemic spreading. A variety of modi¯ed Eq. (3) can be considered in the near

future such as replacing Eq. (3) by a sinusoidal or even an irregular curve. On the

other hand, a road congestion will usually not keep a constant di®usion rate but often

decrease until zero. Thus, a deeper consideration should include the reduced di®usion

rate in the congestion process.

(a)

(b)

Fig. 8. (Color online) (a) and (b) represent the distributions of infected and susceptible agents, respec-
tively, corresponding to Fig. 7, where the curve of \squares" represents the case of A ¼ 0, the curve of

\circles" represents the case of A ¼ 0:04, T ¼ 240 and n ¼ 5, the curve of \up triangles" represents the

case of A ¼ 0:04, T ¼ 60 and n ¼ 5, and the curve of \down triangles" represents the case of A ¼ 0:04,

T ¼ 240 and n ¼ 10. The results are obtained by averaging on 500 realizations.
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In conclusion, we have presented a framework to describe the in°uence of periodic

tra±c congestion to epidemic spreading. This framework has considered the spatio-

temporal features of human activities such as rush hours, objective traveling and a

periodic varying di®usion rate, and can be used to di®erent tra±c congestions.

Numerical simulations show that there are three key parameters, i.e. the amplitude

A, period T and duration n to in°uence epidemic spreading in periodic tra±c con-

gestion. Based on the star graph, a theoretical analysis is presented to explain the

numerical results. These ¯ndings suggest that controlling the contagion in daily

tra±c congestion may be another e®ective way to reduce epidemic spreading.
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